Научные публикации Валерия Лукьяненко

Статьи
Cover BJ 2000

  1. Lukyanenko, V., Muriel, J., Garman, D., Breydo, L., and Bloch, R.J. (2022). Elevated Ca2+ at the triad junction underlies dysregulation of Ca2+ signaling in dysferlin-null skeletal muscle. Frontiers in Physiology 13:1032447. PMID: 36406982.
  2. Muriel, J., Lukyanenko, V., Kwiatkowski, T., Bhattacharya, S., Garman, D., Weisleder, N., and Bloch, R.J. (2022). The C2 Domains of Dysferlin: roles in membrane localization, Ca2+ signaling and sarcolemmal repair. Journal of Physiology 600 (8): 1953–1968. PMID: 35156706.
  3. Kinney, C., O’Neill, A., Noland, K., Huang, W., Muriel, J., Lukyanenko, V., Kane, M., Ward, C.W., McLenithan, J., Collier, A.F., Roche, J.A., Reed, P.W., and Bloch, R.J. (2021). μ-Crystallin in mouse skeletal muscle promotes a shift from glycolytic toward oxidative metabolism. Current Research in Physiology 4:47-59. PMID: 34746826.
  4. Lukyanenko, V. ,  Muriel, J.M., and Bloch, R.J. (2017). Coupling of excitation to Ca2+ release is modulated by dysferlin. Journal of Physiology 595(15):5191-5207. PMID:  28568606.
  5. In, J., Lukyanenko, V., Foulke-Abel, J., Hubbard, A. Delannoy, M., Hansen, A.-M., Kaper, J.B., Boisen, N., Nataro, J.P., Zhu, C., Boedeker, E., Giron, J.A., and Kovbasnjuk, O. (2013). Serine Protease EspP from Enterohemorrhagic Escherichia Coli Is Sufficient to Induce Shiga Toxin Macropinocytosis in Intestinal Epithelium. PLOS ONE 8(7):e69196. PMID: 23874912.
  6. Lukyanenko, V. , Malyukova, I., Hubbard, A., Delannoy, M., Boedeker, E., Zhu, C., Cebotaru, L., and Kovbasnjuk, O. (2011). Enterohemorrhagic Escherichia coli infection stimulates Shiga toxin 1 macropinocytosis and transcytosis across intestinal epithelial cells. Am. J. Physiol. - Cell Physiology 301: C1140-C1149. PMCID: 21832249.
  7. Lukyanenko, V., Chikando, A., and Lederer, W.J. (2009). Mitochondria in cardiomyocyte Ca2+ signaling. Int. J. Biochem. Cell Biol. 41(10):1957-1971. PMCID: 19703657.
  8. Salnikov, V. Lukyanenko, Y.O., Lederer, W.J., and Lukyanenko, V. (2009). Distribution of ryanodine receptors in rat ventricular cells. Journal of Muscle Research and Cell Motility 30(3-4):161-170. PMCID: 19707881.
  9. CoverJP 1999Lukyanenko, V. and Lukyanenko, Y.O. (2009). Oxysterols in heart failure. Future Cardiology 5(4):343-354 (invited review). PMCID: 19656059.
  10. Lukyanenko, V., Ziman, A., Lukyanenko, A., Salnikov, V.V., and Lederer, W.J. (2007). Functional groups of ryanodine receptors in rat ventricular cells. Journal of Physiology 583(1):251-269. PMCID: 17627991.
  11. Salnikov, V.V., Lukyanenko, Y.O., Frederick, A., Lederer, W.J., and Lukyanenko, V. (2007). Probing the outer mitochondrial membrane in cardiac mitochondria with nanoparticles. Biophysical Journal 92:1058-1071. PMCID: 17098804.
  12. Lukyanenko, V. (2007). Delivery of nano-objects to functional sub-domains of healthy and failing ventricular myocytes. Nanomedicine 2(6):831-846 (invited review). PMCID: 18095849.
  13. Parfenov, A.S., Salnikov, V., Lederer, W.J., and Lukyanenko, V. (2006). Aqueous diffusion pathways as a part of the ventricular cell ultrastructure. Biophysical Journal 90:1107-1119. PMCID: 16284268.
  14. Tikhonov, I., Deetz, C., Paca, R., Berg, S., Lukyanenko, V., Lim, J.K., and Pauza, C.D. (2006). Human Vγ2Vδ2 T cells contain cytoplasmic RANTES. International Immunology 18:1243-1251. PMCID: 16740603.
  15. Lederer, W.J., Guatimosim, S., Song, L.S., Sobie, E.A., Hartmann, H., and Lukyanenko, V. (2004). Cardiac muscle - Ca2+ sparks in heart muscle. Journal of Muscle Research and Cell Motility 25:602-603. PMCID: 16118853.
  16. Györke, S., Györke, I., Lukyanenko, V., Terentyev, D.A., Viatchenko-Karpinski, S., and Wiesner, T.F. (2002). Regulation of SR calcium release by luminal calcium in cardiac muscle. Frontiers in Bioscience 7:d1454-1463 . PMCID: 12045014.
  17. Lukyanenko, V., Györke, I., Wiesner, T.F., and Györke, S. (2001). Potentiation of Ca2+ release by cADPR in heart is mediated by enhanced Ca2+ uptake into the sarcoplasmic reticulum. Circulation Research 89:614-622. PMCID: 11577027.
  18. Lukyanenko, V., Viatchenko-Karpinski, S., Smirnov, A., Wiesner, T.F., and Györke, S. (2001). Dynamic regulation of the SR Ca2+ content by lumenal Ca2+-sensitive leak through RyRs in rat ventricular myocytes. Biophysical Journal 81:785-798 . PMCID: 11463625.
  19. Subramanian, S., Viatchenko-Karpinski, S., Lukyanenko, V., Györke, S., and Wiesner, T.F. (2001). The underlying mechanisms of symmetric calcium wave propagation in rat ventricular myocytes. Biophysical Journal 80:1-11. PMCID: 11159379.
  20. Lukyanenko, V., Györke, I., Subramanian, S., Smirnov, A., Wiesner, T.F., and Györke, S. (2000). Inhibition of Ca2+ sparks by ruthenium red in permeabilized rat ventricular myocytes. Biophysical Journal 79:1273-1284. PMCID: 10968991.
  21. Lukyanenko, V. and Györke, S. (1999). Ca2+ sparks and Ca2+ waves in saponin-permeabilized cardiac myocytes. Journal of Physiology 3:575-585. PMCID: 10601490.
  22. Nasledov, G.A., Katina, I.E., Terentyev, D.A., Tomilin, N.V., and Lukyanenko, V. (1999). Development of muscle-specific features in cultured frog embryonic skeletal myocytes. Journal of Muscle Research and Cell Motility 20:517-527.
  23. Lukyanenko, V., Subramanian, S., Györke, I., Wiesner, T., and Györke, S. (1999). The role of sarcoplasmic reticulum luminal Ca2+ in generation of Ca2+ wave in rat ventricular myocytes. Journal of Physiology 518.1:173-18 . PMCID: 10373699.
  24. Lukyanenko, V., Wiesner, T., and Györke, S. (1998). Termination of Ca2+ release during Ca2+ sparks in rat ventricular myocytes. Journal of Physiology 3:667-677. PMCID: 9508828.
  25. Nasledov, G.A., Tomilin, N.V., Luk'ianenko, V.I., and Terentyev, D.A. (1998). Structural differentiation of dissociated skeletal embryonic myocytes in frog under conditions of cell culture. Tsitologiia (Cytology) 40(1):69-75 (in Russian). PMCID: 9541972.
  26. Györke, S., Lukyanenko, V., and Györke, I. (1997). Dual effects of tetracaine on spontaneous calcium release in rat ventricular myocytes. Journal of Physiology 2:297-309. PMCID: 9147318.
  27. Katina, I.E., Luk'ianenko, V.I., Terentyev, D.A., Tomilin, N.V., and Nasledov, G.A. (1997). The formation of electrical excitability in cultured frog embryonic myocytesRussian Physiological Journal 83(7):85-95 (in Russian "Формирование электровозбудимости в культивируемых миоцитах лягушки" И.Е. Катина и другие). PMCID: 9487036.
  28. Lukyanenko, V., Györke, I., and Györke, S. (1996). Regulation of calcium release by calcium inside the sarcoplasmic reticulum in ventricular myocytes. Pflügers Archive - European Journal of Physiology 432(6):1047-1054. PMCID: 8781199.
  29. Lukyanenko, V., Katina, I.E., Nasledov, G.A., and Terentyev, D.A. (1995). Pharmacological analysis of voltage-dependent potassium currents in cultured skeletal myocytes of frog Rana temporaria. General Physiology and Biophysics 14:523-532. PMCID: 8773494.
  30. Lukyanenko, V., Katina, I.E., Nasledov, G.A., and Terentyev, D.A. (1995). Beta-adrenergic regulation of voltage-dependent calcium currents in cultured skeletal myocytes of the frog Rana temporaria. General Physiology and Biophysics 14:513-521, PMID: 8773493.
  31. Luk'ianenko, V., Katina, I.E., Nasledov, G.A., and Terentyev, D.A. (1995). Effects of adrenaline on voltage dependent calcium currents of cultured frog skeletal myoblasts. Dokl. Akad. Nauk 344:836-839, PMCID: 8535281 (in Russian).
  32. Lukyanenko, V., Katina, I.E., and Nasledov, G.A. (1994). Voltage dependent fast calcium current in cultured skeletal myocytes. General Physiology and Biophysics 13:237-246, PMCID: 7835684.
  33. Luk'ianenko, V., Katina, I.E., and Nasledov, G.A. (1994). The effect of calcium current blockers on voltage dependent potassium currents in cultured frog skeletal myocytes. Dokl. Akad. Nauk 338:119-121. PMCID: 7527262 (in Russian).
  34. Luk'ianenko, V., Katina, I.E., and Nasledov, G.A. (1994). Voltage dependent calcium currents in cultured frog skeletal myocytes. Neurophysiology/Neirofiziologiia 2(1):44-48.
  35. Lukyanenko, V., Katina, I.E., Nasledov, G.A., Lonsky, A.V. (1993). Voltage dependent ionic currents in frog cultured skeletal myocytes. General Physiology and Biophysics 12(3):231-247, PMCID: 8224780.
  36. Nasledov, G.A., Lukyanenko, W., Katina, I.E., and Lonsky, A.V. (1992). Ionic requirements for the activation of contraction in embryonic frog myoblasts in culture. General Physiology and Biophysics 11(2):153-158. PMID: 1426968.
  37. Luk'ianenko, V., Katina, I.E., Nasledov, G.A., and Lonsky, A.V. (1992). Voltage dependent outward ionic currents of cultured frog myoblasts. Neurophysiologiya. 24:109-113. PMCID: 1584301 (in Russian).
  38. Luk'ianenko, V., Nasledov, G.A., Katina, I.E., and Lonsky, A.V. (1992). Voltage dependent inward ionic currents of cultured frog myoblasts. Journal of Evolutionary Biochemistry and Physiology 28:134-137. PMCID: 1326148 (in Russian).
  39. Lukyanenko, V. (1991). Development of excitability in cultured frog skeletal myocytes. Avtoreferat Kandidatskoi Dissertacii, tip. VIR 425:1-24 (in Russian).
  40. Barabanova, V.V., Luk'ianenko, V.I., and Titova, V.A. (1991). Effects of the paratireoid hormone on Vero cell culture. Fiziologichesky Zhurnal SSSR (Physiological Journal, USSR) 77(12):86-90. PMCID: 1668745 (in Russian).
  41. Kuz'mina, T.R., Luk'ianenko, V.I., and Ianvareva, I.N. (1989). The neuronal electrical activity of the cerebellar cortex in hypoxia. Pathological Physiology and Experimental Therapeutics 5:53-56. PMCID: 2616217 (in Russian; Т.Р. Кузьмина, В.И. Лукьяненко, И.Н. Январёва "Электрическая активность нейронов коры мозжечка при гипоксии" Патологическая физиология и эксперементальная терапия, т.5 стр. 53-56).
  42. Luk'ianenko, V. (1988). Spike activity in cerebellar cortex neurons during repeated hypoxia. In: Damage of membranes and postreanimation pathology. Omsk, viniti DBYBNB #4534-B88:37-41 (in Russian).

Главы в книгах

  1. Lukyanenko, V. (2013). Permeabilization of cell membrane for delivery of nano-objects to cellular sub-domains. In: MiMB Cellular and Subcellular Nanotechnology. Volkmar Weissig, Tamer Elabayoumi, Mark Olsen (Editors), Springer Science+Business Media, LLC. Methods Mol. Biol. 991:57-63. PMID: 23546659.
  2. Lukyanenko, V. and Salnikov, V.V. (2013). Gold nanoparticle as a marker for precise localization of nano-objects within intracellular sub-domains. In: MiMB Cellular and Subcellular Nanotechnology. Volkmar Weissig, Tamer Elabayoumi, Mark Olsen (Editors), Springer Science+Business Media, LLC. Methods Mol. Biol. 991: 33-39. PMID: 23546656.
  3. Lukyanenko, V. (2010). Therapeutic nano-object delivery to sub-domains of cardiac myocytes. In: Organelle-Specific Pharmaceutical Nanotechnology. Volkmar Weissig, Gerard G.M. D’Souza (Editors), series “Engineering in Medicine & Biology” with Martin Yamush and Christopher James as Series Editors, Artech House, Norwood MA, pp. 433-448.

Кандидатская диссертация

  1. Lukyanenko, (1991). Development of excitability in cultured frog skeletal myocytes. Avtoreferat Kandidatskoi Dissertacii, tip. VIR 425:1-24 (in Russian).

Патенты

  1. Bloch, R.J., Muriel, J., Lukyanenko, V., and Weisleder, N. (2022). C2 domain therapeutics and uses thereof. Patent Number: WO 2022/261127. Patent Assignee: University of Maryland, Baltimore.
  2. Kovbasnjuk, O. and Lukyanenko, V. (2014). Composition, useful for increasing uptake of cargo agent across intestinal epithelial barrier and delivering therapeutic, vaccine/diagnostic compound across the epithelial barrier, includes transcytosis enhancer, cargo agent, and carrier. Patent Number: WO2014197546-A1 Patent Assignee: UNIV JOHNS HOPKINS.

Тезисы

  1. Lukyanenko, V., Muriel, J., and Bloch, R.J. (2023). Elevated Ca2+ at the triad junction underlies dysregulation of Ca2+ signaling in dysferlinopathy". 67th Biophysical Society Annual Meeting, San Diego, CA, February 18–22, Biophysical Journal 122 (3), 34a.
  2. Lukyanenko, V., Muriel, J., and Bloch, R.J. (2022). Specific effects of individual C2 domains on recovery of voltage-induced SR calcium release after osmotic shock in muscle fibers from dysferlin-null mice. 65th Annual Meeting of the Biophysical Society, San Francisco, California, February 15–19, Biophysical Journal 121 (3), 88a.
  3. Lukyanenko, V., Muriel, J., and Bloch, R.J. (2021). Effects of Point Mutations of Dysferlin on Ca2+ Signaling in Murine. 64th Annual Meeting of the Biophysical Society, Boston, March 2 - March 6. Biophysical Journal 120 (3), 237a-238a.
  4. Bloch, R.J., Lukyanenko, V., Muriel, J., Kwiatkowski, T., Bhattacharya, S., and Weisleder. (2020). Different structural domains of dysferlin serve distinct functions in t-tubule targeting, membrane repair, protein binding and Ca2+ signaling. Eighth Dysferlin Conference, Orlando, Florida, March 11th - 14th, 2020.
  5. Lukyanenko, V., Muriel, J., and Bloch, R.J. (2020). Effect of BAPTA and dysferlin’s C2A domain on recovery of Ca2+ transients after osmotic shock in dysferlin-null myofibers. 64th Annual Meeting of the Biophysical Society, San Diego, California, February 15–19, Biophysical Journal 118 (3), 35a.
  6. Lukyanenko, V., Muriel, J., and Bloch, R.J. (2019). Role of dysferlin’s C2A domain in voltage-induced calcium release after osmotic shock in murine skeletal myofibers. 63th Annual Meeting of the Biophysical Society, Baltimore, Maryland, March 2 - March 6. Biophysical Journal 116(3.1): 522A.
  7. Lukyanenko, V., Muriel, J., and Bloch, R.J. (2018). Dysferlin C2A domain is involved in recovery of voltage-induced SR calcium release after osmotic shock in murine muscle fibers. 62nd Annual Meeting of the Biophysical Society, San Francisco, California, February 17 - February 21. Biophysical Journal 114(3.1): 471A.
  8. Bloch, R.J., Lukyanenko, V., and Muriel, J. (2017). Dysferlin reduces calcium leak and stabilizes excitation-contraction coupling in mature muscle. 22nd International Congress of the World Muscle Society, 3-7 October 2017, St. Malo, France.
  9. Lukyanenko, V., Muriel, J., and Bloch, R.J. (2017). Calcium-induced SR calcium leak in dysferlin-null murine muscle. 61st Annual Meeting of the Biophysical Society, New-Orleans, Louisiana, February 11 - February 15, Biophysical Journal 112(3.1): 118A.
  10. Lukyanenko, V., Muriel, J., and Bloch, R.J. (2016). Dysferlin stabilizes excitation-contraction coupling in murine skeletal myofibers. 60th Annual Meeting of the Biophysical Society, Los-Angeles, California, February 27 - March 2. Biophysical Journal 110 (3.1): 588A.
  11. Bloch, R.J., Lukyanenko, V., and Muriel, J. (2016). Dysferlin Stabilizes Calcium Signaling in Mature Skeletal Myofibers. New Directions in Biology and Disease of Skeletal Muscle. Seventh Biennial Conference, June 29 – July 2, Orlando, Florida.
  12. Lukyanenko, V., and Bloch, R.J. (2015). Diltiazem specifically protects dysferlin-null myofibers from the loss of the Ca transient after osmotic shock injury. 7th Dysferlin Conference, November 4th – 7th, Toronto, Canada.
  13. Lukyanenko, V., Muriel, J., and Bloch, R.J. (2015). Defective Excitation-Contraction Coupling Associated with Ca-Induced Ca Release in Repetitively Injured Dysferlin-Null Myofibers. 7th Dysferlin Conference, November 4th – 7th, Toronto, Canada.
  14. Bloch, R.J., Lukyanenko, V., and Muriel, J. (2015). Abnormal Ca-Signaling in Dysferlin-Null Muscle Fibers in Vitro. 7th Dysferlin Conference, November 4th – 7th, Toronto, Canada.
  15. Lukyanenko, V., Hansen, A.-M., Kaper, J.B., Zhu, C., Boedeker, E. and Kovbasnjuk, O. (2012). Attaching and Effacing Lesions are not necessary for EHEC-stimulated Shiga toxin Macropinocytosis and Transcytosis across Intestinal Epithelial Layer. May 19-22, San Diego, CA, Gastroenterology 142(5 sup.1): S21-S21.
  16. Lukyanenko, V., Hansen, A.-M., Kaper, J.B., Zhu, C., Boedeker, E., and Kovbasnjuk, O. (2012). Neither espa-mediated type 3 secretion, nor intimin-mediated attachment is necessary for Ehec-stimulated Shiga toxin macropinocytosis. Zoonoses and Public Health 59: 11.
  17. Lukyanenko, V., Hansen, A.-M., Michalski, J., Kaper, J.B., Zhu, C., Boedeker, E., and Kovbasnjuk, O. (2012). Active Type 3 Secretion System (T3SS) is not necessary for EHEC-stimulated Shiga toxin macropinocytosis. The 8th International Symposium on Shiga Toxin (Verocytotoxin) Producing Escherichia coli Infections, 6-9 May, Amsterdam, Netherlands.
  18. Lukyanenko, V., and Kovbasnjuk, O. (2012). Enterohemorrhagic E. coli (EHEC) stimulate macropinocytosis of Shiga toxin in intestinal epithelial cells (IEC) by activating Src. Keystone Symposia on Molecular and Cellular Biology, Membranes in Motion, January 22-27, Tahoe City, California.
  19. Lukyanenko, V., Hubbard, A., Delanoy, M., Hanes, J., Donowitz, M., and Kovbasnjuk, O. (2011). Towards understanding mechanisms underlying EHEC-induced transcellular transport of nano-objects across an intestinal epithelial barrier. Advances in Inflammatory Bowel Diseases Conference, December 1-3, Hollywood, Florida, P247, Inflammatory Bowel Diseases, 17 (12): S85.
  20. Lukyanenko, V., Hubbard, A., Delanoy, M., Hanes, J., Donowitz, M., and Kovbasnjuk, O. (2011). Targeting the mTOR Signaling Prevents and Treats Campylobacter Jejuni-Induced Colitis.
  21. Lukyanenko, V., Hubbard, A., Delanoy, M., Boedeker, E., and Kovbasnjuk, O. (2011). EHEC infection stimulates macropinocytosis and transcellular transcytosis of Shiga toxin 1 in intestinal epithelial cells by a myosin II-dependent mechanism. Digestive Disease Week. May 1-7, Chicago, IL, Gastroenterology (oral presentation).
  22. Lukyanenko, and W.J. Lederer. (2009). Effects of oxysterols on the SR Ca2+ cycling in ventricular myocytes. 53rd Annual Meeting of the Biophysical Society, Boston, MA, February 28 - March 4. Program Number: 2643-Pos, Biophysical Journal 96(3): 514a.
  23. Lukyanenko,, T.K. Rostovtseva, and W.J. Lederer. (2008). Fluo-3 in the mitochondrial intermembrane space. 52nd Annual Meeting of the Biophysical Society, Long Beach, CA, February 2-6. Biophysical Journal 93:25a.
  24. Lukyanenko,, V. Salnikov, Y.O. Lukyanenko, and W.J. Lederer. (2007). Permeation of mitochondrial outer membrane by nano-objects in rat ventricular myocytes. 51st Annual Meeting of the Biophysical Society, Baltimore, Maryland, March 3-7. Biophysical Journal 92:7a (oral presentation).
  25. Lukyanenko,, A. Ziman, C.A. Frederick, and W.J. Lederer. (2007). Functional groups of ryanodine receptors in rat ventricular myocytes. 51st Annual Meeting of the Biophysical Society, Baltimore, Maryland, March 3-7. Biophysical Journal 92:25a (oral presentation).
  26. Lukyanenko,, Salnikov, V., Parfenov, A., Lederer, W.J. (2006). Availability of cellular sub-domains of ventricular cells for nano-objects. 4th Nanomedicine and Drug Delivery Symposium, Omaha, NE, October 8-10: 111.
  27. Salnikov, V., Parfenov, A., Lederer, W.J., and Lukyanenko, (2006). Diffusion pathways within the cytosol of heart cells. 50th Annual Meeting of the Biophysical Society, Salt Lake City, Utah, February 18-22. Biophysical Journal 90:109a-110a.
  28. Tikhonov, I., Berg -Dixon, S., Lukyanenko, V., Deetz, C., and Pauza, C.D. (2005). Circulating Human Vγ2/Vδ2 T Cells Express Cytoplasmic RANTES. Retrovirology 2(s1):
  29. Parfenov, A., Salnikov, V., Lederer, W.J., Chinopoulos, C., and Lukyanenko, (2005). Probing intracellular space with gold nanoparticles. 49th Annual Meeting of the Biophysical Society, Long Beach, CA, February 12-16. Biophysical Journal 88 (1 part 2):88a.
  30. Salnikov, V.V., Lukyanenko, A., Lederer, W.J., and Lukyanenko, (2005). Spatial distribution of ryanodine receptors in rat ventricular cells. 49th Annual Meeting of the Biophysical Society, Long Beach, CA, February 12-16. Biophysical Journal 88 (1 part 2):87a.
  31. Chinopoulos, C., Lederer, W.J., and Lukyanenko, (2005). Visualization of mitochondrial intermembrane space with fluo-3 (K+) in isolated rat ventricular cardiomyocytes. 49th Annual Meeting of the Biophysical Society, Long Beach, CA, February 12-16. Biophysical Journal 88 (1 part 2):87a.
  32. Salnikov, V.V., Lederer, W.J., and Lukyanenko, (2004). Ultrastructural characteristics of contacts between intermyofibrillar mitochondria and sarcoplasmic reticulum in rat ventricular myocytes. 48th Annual Meeting of the Biophysical Society, Baltimore, MD, Biophysical Journal 86 (1, part 2):49a.
  33. Chinopoulos, C., Lederer, W.J., Fiskum, G., and Lukyanenko, (2004). The Ca2+ cycling in isolated rat cardiac mitochondria. 48th Annual Meeting of the Biophysical Society, Baltimore, MD. Biophysical Journal 86 (1, part 2):108a.
  34. Lukyanenko,, Lederer, W.J., and Salnikov, V.V. (2003). Role of intermyofibrillar mitochondria (IMM) in local regulation of the SR Ca2+ cycling. 47th Annual Meeting of the Biophysical Society, San Antonio, TX. Feb. 23-27. Biophysical Journal 84(2, part 2):338a.
  35. Lukyanenko,, and Györke, S. (2002). Mitochondrial Ca2+ uptake influences the properties of cardiac Ca2+ waves. 46th Annual Meeting of the Biophysical Society, San Francisco, CA. Feb. 23-27. Biophysical Journal 82(1, part 2):114a.
  36. Lukyanenko,, Györke, I., and Györke, S. (2001). Mobilization of SR Ca2+ by cADPR in heart is mediated by luminal Ca-dependent Ca release. 45th Annual Meeting of the Biophysical Society, Boston, MA, Feb. 17-21, Biophysical Journal 80(1, part 2):608a.
  37. Gaur, N., Lukyanenko, V., Wiesner, T.F., and Györke, S. (2001). A novel control framework to interpret luminal calcium-induced calcium release (LCICR). 45th Annual Meeting of the Biophysical Society, Boston, MA, Feb. 17-21. Biophysical Journal 80(1, part 2):591a.
  38. Subramanian, S., Viatchenko-Karpinski, S., Lukyanenko, V., Gyorke, S., and Wiesner, T. (2000). The Underlying Mechanisms of Symmetric Ca2+ Wave Propagation in Rat Ventricular Myocytes. Frontiers in Mathematical and Computational Biology, UT Dallas, TX, June 17 -19.
  39. Lukyanenko,, and Györke, S. (2000). Dynamic regulation of SR Ca2+ content by lumenal Ca2+-sensitive leak through RyRs in rat cardiomyocytes. 44th Annual Meeting of the Biophysical Society, New Orleans, Louisiana, February 12-16. Biophysical Journal 78(1, part 2):440A.
  40. Wiesner, T., Subramanian, S., Viatchenko-Karpinski, S., Lukyanenko, V., and Györke, S. (2000). The underlying mechanisms of circular calcium wave propagation in rat ventricular myocytes. 44th Annual Meeting of the Biophysical Society, New Orleans, Louisiana, February 12-16. Biophysical Journal 78(1, part 2):378A.
  41. Wiesner, T., Lukyanenko, V., Gyorke, S., Gaur, N., and Smirnov, A. (2000). Dynamic Regulation of SR Ca2+ Content by Lumenal Ca2+-sensitive Leak through RyRs in Rat Cardiomyocytes, American Society of Chemical Engineers Winter Annual Meeting, Los Angeles, CA. November 12-17.
  42. Subramanian, S., Viatchenko-Karpinski, S., Lukyanenko, V., Gyorke, S., and Wiesner, T. (2000). The Underlying Mechanisms of Circular Ca2+ Wave Propagation in Rat Ventricular Myocytes. American Society of Chemical Engineers Winter Annual Meeting, Los Angeles, CA, November 12-17.
  43. Lukyanenko, V., Györke, , Zahradnikova, A., Zahradnik, I., and Györke, S. (2000). Ca2+ regulation of Ca2+ release in heart. 3rd International Symposium on “Membrane Channels, Transporters, and Receptors”. The Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava June 4-7, Smolenice, Slovakia:L3.
  44. Subramanian, S., Viatchenko-Karpinski, S., Lukyanenko, V., Györke, S., and Wiesner, T. (2000). The underlying mechanisms of circular Ca2+ wave propagation in rat ventricular myocytes. Biomedical Engineering Society Annual Meeting, Seattle, WA, October 12-14, Abstract Tracking ID#: 13632.
  45. Wiesner, T., Lukyanenko, V., Subramanian, S., Györke, , and Györke, S. (1999). The role of luminal Ca2+ in generation of Ca2+ waves in rat ventricular myocytes. Annual Meeting of the American Institute of Chemical Engineers (AIChE), Receptor-Mediated Processes, 10.31-11.05 at the Wyndham Anatole Hotel in Dallas, TX.
  46. Wiesner, T., Subramanian, S., Viatchenko-Karpinski, S., Lukyanenko, V., and Györke, S. (1999). The underlying mechanisms of circular calcium wave propagation in rat ventricular myocytes. Annual Meeting of the American Institute of Chemical Engineers (AIChE), Presented at: [305] - Gene Therapy and Intracellular Processes, October 31 through November 5 at the Wyndham Anatole Hotel in Dallas, TX.
  47. Lukyanenko,, Györke, I., and Györke, S. (1999). Probing the functional organization of Ca2+ release units in cardiac myocytes by RyR channel inhibitors. 43rd Annual Meeting of the Biophysical Society, Baltimore, Maryland, February 11-12, Biophysical Journal 76(1):A464.
  48. Lukyanenko,, and Györke, S. (1999). Ca2+ sparks and Ca2+ waves in saponin-permeabilized cardiac myocytes. 43 Annual Meeting of the Biophysical Society, Baltimore, Maryland, February 11-12. Biophysical Journal 76(1):A464.
  49. Lukyanenko, V., Wiesner, T., and Györke, S. (1998). Termination of Ca2+ release during Ca2+ sparks in rat ventricular myocytes, American Society of Chemical Engineers Winter Annual Meeting, Miami, FL, November 15-20.
  50. Terentyev, D.A., Katina, I.E., Lukyanenko, V.I., and Nasledov, G.A. (1998). Potassium current induced by 4-aminopyridine in cultured frog embryonic skeletal myocytes. 27 European Muscle Congress, Lund, Sweden, 11-16 September, D-10.
  51. Mészáros, L.G., and Lukyanenko, V. (1998). Nitric oxide reduces spontaneous calcium release activity in isolated rat ventricular myocytes – a confocal calcium imaging study. 42nd Annual Meeting of the Biophysical Society, W-PM-L3, Kansas City, Missouri, February 22-26. Biophysical Journal 74(2):A247.
  52. Terentyev, D.A., Katina, I.E., Lukyanenko, V.I., and Nasledov, G.A. (1998). Activating effect of 4-aminopyridine on potassium currents of embryonic cultured skeletal frog myocytes. 42nd Annual Meeting of the Biophysical Society, Tu-Pos397, Kansas City, Missouri, February 22-26. Biophysical Journal 74(2):A213.
  53. Lukyanenko,, and Györke, S. (1998). Effect of caffeine and thapsigargin on the propagation of Ca2+ waves in rat ventricular myocytes. 42nd Annual Meeting of the Biophysical Society, W-Pos92, Kansas City, Missouri, February 22-26. Biophysical Journal 74(2):A271.
  54. Nasledov, G.A., Katina, I.E., Tomilin, N.V., Terentyev, D.A., and Lukyanenko, V.I. (1997). Developmental changes in structure and electrical properties in cultured muscle frog embryonic myocytes. XXXIII International Congress of Physiological Sciences, Petersburg, Russia, June 30-July 5.
  55. Nasledov, G.A., Tomilin, N.V., Katina, I.E., Terentyev, D.A., and Lukyanenko, V.I. (1997). Structural differentiation and electric excitability in frog embryonic skeletal myocytes in culture. 40th Anniversary of the Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia (in Russian).
  56. Wiesner, T., Lukyanenko, V., and Györke, S. (1997). Inactivation of Ca2+ release during Ca2+ sparks in rat ventricular myocytes. 41st Annual Meeting of the Biophysical Society, M-Pos111, New Orleans, Louisiana, March 2-6. Biophysical Journal 72(2):A45.
  57. Györke, S., Lukyanenko, V., and Györke, I. (1997). Dual effects of tetracaine on spontaneous calcium release in ventricular myocytes. 41st Annual Meeting of the Biophysical Society Tu-Pos139, New Orleans, Louisiana, March 2-6. Biophysical Journal 72(2):A163.
  58. Nasledov, G.A., Tomilin, N.V., Lukyanenko, V.I., Katina, I.E., and Terentyev, D.A. (1996). The development of muscle cell differentiation in culturing embryonic frog skeletal myocytes. 25 European Muscle Congress, La Grand Motte, Montpellier, France, September 14-17.
  59. Tomilin, N.V., Lukyanenko, V.I., Terentyev, D.A., and Nasledov, G.A (1996). Structural differentiation of frog embryonic myocytes in short-term dissociated cell culture. RAS I International Symposium "Evolutionary Physiology", -Petersburg, Russia, pp. 234-235 (in Russian).
  60. Nasledov, G.A., Katina, I.E., Lukyanenko, V.I., Terentyev, D.A., and Tomilin, N.V. (1996). Morphofunctional development of embryonic skeletal myocytes in culture. RAS I International Symposium "Evolutionary Physiology", -Petersburg, Russia, pp.158-159 (in Russian).
  61. Nasledov, G.A., Lukyanenko, V., and Katina, I.E. (1995). Voltage dependent potassium ionic currents in cultured frog myoblasts. Symposium "Membrane Transport and Cell Functions", -Petersburg, Russia. Tsitologiya (Cytology) 37(4):388-389 (in Russian).
  62. Lukyanenko,I., Katina, I.E., and Nasledov, G.A. (1994). Effects of calcium blockers on voltage dependent potassium currents in cultured frog skeletal myocytes. International Symposium "Biological Motility", Pushchino, Russia, pp. 106-107.
  63. Katina, I.E., Lukyanenko, V., Nasledov, and G.A., Roschina, N.G. (1994). Interaction of 4-aminopyridine with potassium channels in cultured frog embryonic myocytes. 23 European Muscle Congress, Bochum, Germany, 03/07P.
  64. Nasledov, G.A., Lukyanenko, V., and Katina, I.E. (1994). Effects of blockers of calcium channels on voltage dependent potassium currents in cultured frog skeletal myocytes. 23 European Muscle Congress, Bochum, Germany, 03/12P.
  65. Lukyanenko,, Nasledov, G.A., and Katina, I.E. (1994). Effects of adrenaline on voltage dependent ionic currents of frog cultured skeletal myocytes. 23 European Muscle Congress, Bochum, Germany, 03/10P.
  66. Lukyanenko,, Katina, I.E, and Nasledov, G.A. (1993). Fast-activated calcium channels in cultured frog embryonic myocytes. XXXII International Congress of Physiological Sciences, Glasgow, 4:190.
  67. Nasledov, G.A., Katina, I.E., Lukyanenko, V.I., and Lonsky, A.V. (1993). Voltage dependent ionic currents and activation of contraction in cultured frog skeletal myocytes. 22 European Muscle Congress, Bielefeld, Germany. Journal of Muscle Research and Cell Motility 14(2):229.
  68. Nasledov, G.A., Lebedinskaya, I.I., Lukyanenko, V.I., and Katina, I.E. (1991). Concerning myogenic mechanism of determination of frog muscle fibers of tonic and fasic types during ontogenesis. VI All Union Symposium, Physiology of Mediators, Kazan, USSR, p. 72 (in Russian).
  69. Nasledov, G.A., Györke, S., Lukyanenko, V.I., and Katina, I.E. (1990). Outward calcium currents during myogenesis of frog skeletal muscle fibers. IX All Union Symposium. Biophysics and biochemistry of biological motility (Muscle contraction), Tbilisi, USSR, p. 87 (in Russian).

 

Категории: Это интересно
Короткая ссылка на этот пост: https://vectork.org/?p=5080

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.